APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Andrey Shcherbina

Principal Oceanographer

Affiliate Assistant Professor, Civil and Environmental Engineering

Email

ashcherbina@apl.washington.edu

Phone

206-897-1446

Department Affiliation

Ocean Physics

Education

M.S. Physical Oceanography, Moscow Institute of Physics and Technology, 1998

Ph.D. Physical Oceanography, Scripps Institution of Oceanography, 2004

Andrey Shcherbina's Website

http://faculty.washington.edu/shcher/

Projects

Salinity Processes in the Upper Ocean Regional Study — SPURS

The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate.

15 Apr 2015

Lateral Mixing

Small scale eddies and internal waves in the ocean mix water masses laterally, as well as vertically. This multi-investigator project aims to study the physics of this mixing by combining dye dispersion studies with detailed measurements of the velocity, temperature and salinity field during field experiments in 2011 and 2012.

1 Sep 2012

APL-UW Involvement in the Coastal Margin Observation and Prediction Science and Technology Center (CMOP)

AUVs will be deployed by a newly formed APL-UW AUV group as part of CMOP's experimental observation network which consists of multiple fixed and mobile platforms equipped with oceanographic sensors.

More Info

15 Jun 2012

The Center for Coastal Margin Observation and Predication (CMOP) has purchased from Hydroid, LLC two Autonomous Underwater Vehicles (AUVs) for its studies. The REMUS (Remote Environmental Measuring Units) 100 (see Figure 1) is a compact, light-weight, AUV designed for operation in coastal environments up to 100 meters in depth. The AUVs will be deployed by a newly formed APL-UW AUV group as part of CMOP's experimental observation network which consists of multiple fixed and mobile platforms equipped with oceanographic sensors. The AUVs will be used, primarily, to study the Columbia River plume and estuary region. The AUVs will be deployed periodically throughout each operational year. We also plan to allow customization of the AUVs by integrating novel biogeochemical sensors to meet specific scientific objectives for the CMOP program.

More Projects

Publications

2000-present and while at APL-UW

Observations of elevated mixing and periodic structures within diurnal warm layers

Zeiden, K., J. Thomson, A. Shcherbina, and E. D'Asaro, "Observations of elevated mixing and periodic structures within diurnal warm layers," J. Geophys. Res., 129, doi:10.1029/2024JC021399, 2024.

More Info

9 Nov 2024

Surface drifters (SWIFTs) equipped with down-looking high-resolution acoustic doppler current profilers (ADCPs) were used to estimate the turbulent kinetic energy (TKE) dissipation rate (ε) within highly stratified diurnal warm layers (DWLs) in the Southern California Bight. Over a 10-day period, five instances of DWLs were observed with strong surface temperature anomalies up to 3°C and velocity anomalies up to 0.3 m s-1. Profiles of ε in the upper 5 m suggest turbulence is strongly modulated by the DWL stratification. Burst-averaged (8.5 min) ε is stronger than predicted by law-of-the-wall boundary layer scaling within the DWLs and suppressed below. Predictions for ε within the DWLs are improved by a shear-production scaling using observed shear and linearly decaying turbulent stress. However, ε is still under-predicted. Examination of the un-averaged acoustic backscatter data suggests elevated ε is related to the presence of turbulent structures in the DWLs which span the layer height and strongly modulate TKE. Evolution in the bulk Richardson number each day suggests the DWLs become unstable to layer-scale overturning and entrainment each afternoon, thus the turbulent structures may result from shear-driven instability. This interpretation is supported by a conditional average of the data during a burst characterized by strongly periodic structures. The structures resemble high-frequency internal waves with strong asymmetry in the along-flow direction (steepening) which suggests they are unstable. Coincident asymmetric patterns in upwelling/downwelling and corresponding regions of strong vertical convergence/divergence suggest that both vertical transport and local TKE generation are plausible sources of elevated ε in the DWLs.

Rapid downwelling of tracer particles across the boundary layer and into the pycnocline at submesoscale ocean fronts

Pham, H.T., V. Verma, S. Sarkar, A.Y. Shcherbina, and E.A. D'Asaro, "Rapid downwelling of tracer particles across the boundary layer and into the pycnocline at submesoscale ocean fronts," Geophys. Res. Lett., 51, doi:10.1029/2024GL109674, 2024.

More Info

16 Sep 2024

A neutrally buoyant float deployed in an atmospherically driven turbulent ocean boundary layer on the dense side of a submesoscale front was repeatedly carried across the boundary layer by the turbulence and then trapped beneath the slumping front. Lagrangian particles in a large-eddy simulation of a similar baroclinically unstable front forced by surface cooling move along convergent surface filaments toward filament junctions. They are also caught by convective plumes that downwell them at speeds similar to those of the float. Subsequently, some are trapped in the pycnocline by frontal slumping due to ageostrophic secondary frontal circulations. In both observations and simulations, boundary layer turbulence and frontal circulations work together to trap and subduct particles from the mixed layer. The small-scale boundary layer motions move them vertically within the boundary layer and larger, submesoscale frontal circulations move them laterally out of the boundary layer and under the slumping fronts.

Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea

Drushka, K., E. Westbrook, F.M. Bingham, P. Gaube, S. Dickinson, S. Fournier, V. Menezes, S. Misra, J.P. Valentin, E.J. Rainville, J.J. Schanze, C. Schmidgall, A. Shcherbina, M. Steele, J. Thomson, and S. Zippel, "Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea," Earth Syst. Sci. Data, 16, 4209-4242, doi:10.5194/essd-16-4209-2024, 2024.

More Info

16 Sep 2024

As our planet warms, Arctic sea ice coverage continues to decline, resulting in complex feedbacks with the climate system. The core objective of NASA's Salinity and Stratification at the Sea Ice Edge (SASSIE) mission is to understand how ocean salinity and near-surface stratification affect upper-ocean heat content and thus sea ice freeze and melt. SASSIE specifically focuses on the formation of Arctic Sea ice in autumn. The SASSIE field campaign in 2022 collected detailed observations of upper-ocean properties and meteorology near the sea ice edge in the Beaufort Sea using ship-based and piloted and drifting assets. The observations collected during SASSIE include vertical profiles of stratification up to the sea surface, air–sea fluxes, and ancillary measurements that are being used to better understand the role of salinity in coupled Arctic air–sea–ice processes. This publication provides a detailed overview of the activities during the 2022 SASSIE campaign and presents the publicly available datasets generated by this mission (available at https://podaac.jpl.nasa.gov/SASSIE, last access: 29 May 2024; DOIs for individual datasets in the "Data availability" section), introducing an accompanying repository that highlights the numerical routines used to generate the figures shown in this work.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close